

Welcome to Niederaussem Power Plant

Flexible coal power plant operation

24. November 2023

Axel Meschgbiz RWE Technology International GmbH

Niederaussem Power Plant

(1) RWE | Flexibility | New built plants | **Existing plants** | Summary

RWE made a lot of effort to increase flexibility and efficiency of its plants in the last decades Example Lignite

	150 MW Block	300 MW Block	600 MW Block	1,000 MW BoA-Block
D	1963	1965 - 1971	1974	2003
	31%	32 - 34%	35 - 36%	>43%
al 🖉	1.2 kg/kWh	1.1 kg/kWh	1.1 kg/kWh	0.9 kg/kWh

Next Project: 2×550 MW Pre-dried lignite CFBC Units (Canceled)

η Co

RWE's Rhenish lignite mining region and Lignite Power Plants

Fuel characteristics - complete analysis

Proximate analysis H_2O , ash and volatile matter (VM) **Calorific** value Lower calorific value, higher calorific value **Elementary analysis** C. H, N, O, S, Cl, F Ash analysis of macro-elements (XRF) SiO₂, Al₂O₃, TiO₂, Fe₂O₃, CaO, MgO, K₂O, $Na_{2}O, P_{2}O_{5}, SO_{3}$ Ash fusion trajectory in oxidizing and reducing atmosphere Initial deformation temperature (IDT) Softening temperature (ST) Hemispherical temperature (HT) Fluid temperature (FT) Grindability (HGI, PMI)

Kohlenarten			Wasser- gehalt	Energie- gehalt	flüchtige Anteile		
UN-EC	USA (ASTM)	Deutschland (DIN)			(%)	af* (kJ/kg)	waf** (%)
Peat	Peat	Torf			75	6 700	
Ortho- Lignite	Lignite Lignite Sub- bituminous	WEICHBRAUNKO	DHLE	_	/5	6,700	
Meta- Lignite		Mattbraunkohle		35	16,500		
Subbitum.		Glanzbraunkohle			25	19,000	
al	High Volatile Bituminous Coal Medium Vol. Bitumin. Coal	Flammkohle			10	25,000	45
s Co		Gasflammkohle	e	HARTKOHLI			40
nou		Gaskohle	Steinkohl		Kokskohle36,000		35
n B		Fettkohle Eßkohle					28
Bit	Low Vol. Bitumin. Coal						19
Anthracite	Semi- Anthracite	Magerkohle			3	36.000	14
Anundute	Anthracite	Anthrazit			3	30,000	10
af • = aschefrei waf • • = wasser- und aschefreie Substanz							

 \rightarrow Complete analysis gives the whole picture of the combustion behaviour of a Fuel

(1) RWE | Flexibility | New built plants | **Existing plants** | Summary

BoA1 Unit K 1000 MW Class

Cooling tower

(1) RWE | Flexibility | New built plants | Existing plants | Summary

BoA1 Unit K 1000 MW Class

Technical data:

- net power output
- net efficiency
- live steam
- intermediate steam
- condensor pressure
- flue gas temperature at FGD inlet

965 MW 45,2 % 580 °C/275 bar 600 °C/59 bar 29 / 35 mbar 100 °C

Project implementation:

Start of planning:	01.07.1996
Request for approval:	21.03.1997
approval:	12.11.1997
Start of site preparation:	12.12.1997
Start of construction:	03.08.1998
First grid connection:	28.08. 2002

Process Flow Sheet of Lignite PFC

Unit F&G (BoA 2&3) - Most Compact & Efficient Arrangement

146 000 m² (~15 ha)

Heating surfaces

(1) RWE | **Flexibility** | New built plants | Existing plants | Summary

What does flexibility mean? High flexibility can be described as follows:

Dynamic flexibility

- High operational gradient
 (load change speeds)
 - Short start-up time and short minimum downtime
 -) Lowest possible minimum load and options to temporarily maximise the load

Operational flexibility

 High number of start ups and load cycles at reduced lifetime consumption

- High efficiency at lowest possible minimum load
- Uniform, high efficiency curve across the load

Fuel flexibility

RWE's philosophy regarding flexibilisation

Create value by combining technical solutions, process improvements, culture change and market focus!

Cold Start - Comparison Load Change Rate

Design specifications of new power plants Example: Power plant Westfalen

Operational characteristics (Hard Coal, 800 MW)

- 🔘 Base and medium load
- B
- Plant runs through in times of low demand
- Minimum load 25 30%,
 7,500 operation hours per year

Operation Mode	Yearly	40 years	
Cold Starts	6	240	
Warm Starts	42	1,680	
Hot Starts	84	3,360	
Load Cycles	1,200	48,000	

Flexibility requirements are assessed and taken into account during the design stage of the plant.

New advanced materials allow increase in flexibility or efficiency

Efficiency development of lignite-fired plants

High efficiency

Increase in steam parameters for new build plants (700°C power plant)

High flexibility Constant steam parameters in existing and new plants (600°C live steam temperature)

Use of nickel-base alloys depends on operating conditions of future power plants.

Short minimum downtime

Lifetime consumption consideration

Lifetime consumption is considered in the design and in the operation of our plants.

I&C optimisation makes modern power plants even faster

- Reduction in minimum load of 20%-points
- Increase in **load change rate** 5 MW/min
 → 15 MW/min
- Secondary reserve capability ±70 MW in 15 min
- Enhanced load band for primary reserve (min load +max PFR shift/max load -max PFR shift)

Start up optimisation at a 600 MW unit

- Question limitations and boundary values
- Parallelise processes
- Minimise waiting times
- Assess of components were the maintenance is crucial and ensure good condition of these components
- Faster start-ups ...
 - ... without increased lifetime consumption
 - ... without reduced plant safety

Key to success: **Combination of expertise in process technology and I&C optimisation.**

(3) RWE | **Flexibility** | New built plants | Existing plants | Summary

Market-oriented control/ Forecasting of available performance

Closed loop process that combines RWE's expertise as operator and trader

- Technically established forecast increases transparency and forecast accuracy (day ahead and intraday)
- Market-oriented control of the load capacity
- More accurate following of schedule by units
- Substantial simplification of daily business
 (communication dispatch and power plant)

Application: Maximal load optimisation Control and forecasting of available performance

Application: Maximal load optimisation Control and forecasting of available performance

Application: Maximal load optimisation Control and forecasting of available performance

(3) RWE | **Flexibility** | New built plants | Existing plants | Summary

Predicting dynamic minimal load Example: Combined heat and power plant (CHP)

Big Data based prognosis tool

1 Forecast of heat demand of different consumers

- Minimal load prognosis based on heat demand forecast
- Processed information to be utilised by the dispatcher

Benefits

- Minimise losses due to must run conditions
- Avoid plant shutdown and start of backup heat supply unit by minimising minimal load

Future design and optimisation priorities

Thank you very much for your attention